New Product: Raptor 3D Printer from 3DCeram Sinto Tiwari

Sinto Tiwari

 

Spectra Research Corporation (S.R.C.) is pleased to announce a new product offering, Raptor 3D Printer for Fused Filament Fabrication (F.F.F.) 3D printing for metals and ceramics. Earlier this year, Ceramic S.L.A. market leader 3DCeram Sinto became a significant shareholder of Tiwari Scientific Instruments, a German space and industrial research start-up. This acquisition led to their rebranding as 3DCeram Sinto Tiwari.
Raptor 3D

The Raptor 3D Printer, supplied by 3DCeram Sinto Tiwari, is suitable for the cost-effective production of ceramic and metal parts using F.F.F. The process uses specially fabricated bound metal or ceramic filaments shaped into your desired geometry. The printed parts may then be machined to include further details and improve the finish. They can then be heat-treated at high temperatures to eliminate the binder and sintered parts. The Raptor 3D printer yields metal and ceramic parts with a relative density of over 99%.

3DCeram Sinto Tiwari’s printers currently support metals including Copper, Stainless Steel (316L & 17-4PH), and Titanium (Ti6Al4V). The ceramics they support include Alumina (Al2O3), Silicon Carbide (SiC), Silicon Nitride (Si3N4), Tungsten Carbide-Cobalt (WC-Co), Zirconia (ZrO2) and Molybdenum disilicide (MoSi2).

This new acquisition aims for 3DCeram Sinto to offer to integrate the F.F.F. technology into their operations to work with some of the most advanced ceramic and metal materials. The purchase is part of a Sinto group development program titled Multi Advanced Technologies (M.A.T.), which intends to provide a new type of additive and intelligent manufacturing organized in digital networks. The program aims to respond to the imperatives of ecology, sustainable development, and precision by offering a new way of considering the production of parts. 

Contact Us

S.R.C. continues to offer our customers a range of innovative, high-quality scientific products and laboratory services throughout Canada for industrial and scientific markets. For more information about 3DCeram Sinto Tiwari or using their Raptor 3D Printer for metal and ceramics fabrication in manufacturing or R&D, please contact a member of our staff.

3D Ceramic Printing

The world of 3D Ceramic Printing has come a long way since the 1980s when it was considered suitable only for the production of functional or aesthetic prototypes, and a more appropriate term for it at the time was “rapid prototyping”. Today, the the precision, repeatability, and material range of 3D printing have increased to the point that some 3D printing processes are considered viable as an industrial-production technology, whereby the term “additive manufacturing” can be used synonymously with 3D printing.

Applications of 3D ceramic printing

In this article we are going to look at 3D printing—or additive manufacturing if you will—using ceramic materials for the following applications:

1) Production of ceramic foundry cores;

2) Optimization of optical instrumentation.

Types of ceramics used in 3D printing

Before we get too far into the weeds with the two applications highlighted above, let’s briefly have a look at the types of ceramics used in 3D printing. Generally speaking, the qualities of ceramic materials are: high strength, high dimensional stability (low coefficient of thermal expansion), low density, high resistance to abrasion and corrosion, and exceptional chemical stability. There is a variety of ceramic materials used in 3D printing, which are categorized into:

  • Oxide ceramics: alumina, zirconia, silicore, alumina-toughened zirconia, cordierite, 8 mol% yttria-stabilized zirconia, silice SiO2, hydroxyapatite/TCP, and tricalcium phosphate;
  • Non-oxide ceramics: silicon nitride and aluminum nitride.

3D Ceram Sinto, a leader in the world of 3D ceramic printing, offers a full range of ready-to-use ceramic pastes for use with their CERAMAKER printers. Naturally, they advise their customers on the critical issue of the ceramic paste best suited to the application at hand, but can also create ceramic paste formulations according to specifications provided by their customers.

3D Ceramic Printing

3D Ceram ceramic paste

 

3D printing of ceramic foundry cores

3D printing of ceramic foundry cores

 

Foundry cores are integral to the production of turbine blades for aviation, aero-derivative and land-based gas turbines. Up to now manufacturing cores has been a time- and labour intensive process. Today, in an effort to lower fuel consumption, improve turbine efficiency and decrease engine emissions, core designs are becoming increasingly complex. Making a complex, porous ceramic foundry core using conventional manufacturing processes involves making the core in several pieces and then assembling them manually. The likelihood of a problem occurring in this process is considerable, resulting in wasted time and materials—and excessively high costs.

Some of the constraints applied to core production:

  • Dimensional accuracy +/- 0.1 mm
  • Structural strength
  • Surface roughness
  • Material porosity

Additive manufacturing brings a new dimension to conventional industrial processes, allowing all of these elements to be controlled. In addition to saving time and materials and increasing productivity in the production of ceramic foundry cores, the technology delivers the following benefits:

  • Design flexibility
  • Possibility of more core complexity
  • Quick creation of new designs
  • Better responsiveness and productivity
  • Increased profitability
  • Maintenance of core strength

3D printing of optical instruments

3D printing of optical instruments

 

3D printing is one of the key technologies for devising innovative solutions contributing to the optimization of optical instruments, such as a plane mirror for a front-end laser engine (galvo-mirror for high-energy laser application). 3D printing can greatly enhance the design and manufacturing of the optical substrate of such an instrument.

3D printing

Two types of mirror

 

The use of additive manufacturing for the production of optical instruments has the following benefits:

  • Parts are lighter because they feature more complex designs that incorporate holes and semi-closed structures
  • Lead time is reduced as there is no need to manufacture and then lighten by machining a first draft
  • Less ceramic is used, which reduces costs
  • New, more complex and disruptive designs are possible
  • New functions such as internal channels, electrical tracks and feedthroughs can be incorporated.

optical instruments

As a result of new additive manufacturing technology, optical substrates and mirrors can now be more compact, thus allowing for additional functions while still keeping volume and mass low.

Industrial 3D ceramic printers

We’ve touched on the ceramic pastes used in 3D ceramic printing and must do likewise with 3D ceramic printers. The number of ceramic 3D printers on the market has increased steadily in recent years and many industrial solutions are now available. Indeed, more manufacturers are offering professional solutions, capable of designing high-quality parts with increasing speed.

3DCeram Sinto is undoubtedly one of the historical players in ceramic additive manufacturing and has developed a professional range based on a stereolithography process. 3D Ceram Sinto’s CERAMAKER 3D printer family has the widest range and most

practical printing platforms of any company in the market, ranging from the C100 (100 x 100 x 150 mm) to the C3600 (300 x 300 x 100 mm). Taking shrinkage into account, you can produce parts with dimensions up to Ø500 mm  with the CERAMAKER C3600.

Industrial 3D ceramic printers

 

PHI WEBINAR SERIES: Applications of TOF-SIMS Tandem MS Imaging for Industrial Problem Solving

 

Register for Applications of TOF-SIMS Tandem MS Imaging for Industrial Problem Solving
Event status: Not started (Register)
Date and time:
Thursday, September 27, 2018 10:00 am
Central Daylight Time (Chicago, GMT-05:00)
Change time zone
Duration:
1 hour
Description:
Time-of-Flight Secondary Ion Mass Spectrometry (TOF-SIMS) is a powerful analytical technique with submicron spatial resolution, ppm sensitivity, and the ability to detect both elemental and molecular species on surfaces. One limitation of TOF-SIMS is that spectra are often difficult to interpret, especially for real-world industrial samples that have a complex mixture of chemicals on the surface. The TOF-SIMS spectrum contains the fragmentation pattern of all the different molecular species on the surface added together. The recent development of parallel imaging MS/MS has greatly simplified the interpretation of TOF-SIMS spectra. By selecting a single precursor ion from the complex TOF-SIMS spectrum and fragmenting it by collision induced dissociation (CID), the clean and unique fragmentation pattern makes identification easy. Several industrial applications will be discussed that demonstrate how MS/MS greatly extends the analytical capability of the TOF-SIMS technique.
nanoTof

 

 Spectra Research Corporation (SRC

Nanosurf webshop: Benefit from Launch Discounts

Nanosurf launches webshop for AFM accessories and more nanosurf-webshop-benefit-launch-discounts

Dear Customer’s,

Nanosurf’s newly launched webshop features a full range of accessories, including

  • Nanosurf cantilevers (webshop special: 10% discount for first 50 orders)
  • Accessories
  • Mode kits
  • Samples
  • Nanosurf software options (webshop introduction special: 50% discount until end of November)

Intuitive filtering options make it easy to find what you are looking for, and to be sure it is compatible with your Nanosurf AFM system.

 

We currently deliver to the US, Canada, and most of Europe* and will expand in the future. Customers in other countries can select items to obtain an offer from one of our local partners.
10% discount on Nanosurf cantilevers

Special limited webshop launch promotion: to welcome you to the webshop, we are offering a 10% discount to the first 50 customers to place an order for our cantilevers online.

BT06865

Dyn190Al-10

BT06866

Stat0.2LAuD-10

 

Software options at half price for limited time

Take this unique opportunity to upgrade your system — choose the software options that elevate your AFM system to the next level. Discounted software options include:

The offer is valid until November 30, 2017.

 

Basic Seminar on Applied Rheology – Maximize your test methods at our factory seminar!

Get the most from your rheology software and test methods.
Learn how at our seminar on Applied Rheology.

Are your rheological test methods as good as they can be? Find out at our informative seminar. Plus find out how to improve, simplify and standardize methods, data evaluation and documentation.

Book 1, 2 or three of these day-long seminar modules:

  • Module 1: Basics of rheology and rotational testing (Day 1 of seminar)
  • Module 2: Thermo Scientific™ HAAKE™ RheoWin™ rheology software (Day 2 of seminar)
  • Module 3: Viscoelasticity, creep and oscillatory testing (Day 3 of seminar).

For dates, languages (English or German), pricing and information about the seminar location in Germany, view the registration page.

 

Spectra Research Corporation

Address

5805 Kennedy Rd
L4Z 2G3 Mississauga
Ontario
Canada

 

 

 

CoreAFM system well received by customers around the globe

Nanosurf’s new research AFM system, the CoreAFM, is going into operation at customer sites around the globe. The first researchers to use the highly versatile CoreAFM are based in the USA and Germany. Deliveries are also being made to Argentina, Ecuador, and China.

These customers appreciate the compact design and attractive pricing. The powerful benchtop system with a multitude of modes allows them to perform all kinds of measurements, facilitated by interchangeable accessories and mode kits.

Powerful and versatile
Next to standard imaging, you can perform MFM, EFM, PFM, KPFM, C-AFM, EC-AFM, Bio-AFM, SThM, lithography and advanced spectroscopy including stiffness maps, as well as FluidFM™ based experiments.

 

Thanks to the integrated active vibration isolation table, your images will be clean and clear – further enhanced by the innovative Spike-Guard system that automatically catches environmental perturbations, and rescans the affected line.

To find out more about the CoreAFM, view the product page on the Nanosurf website, or for specific questions, contact us directly.

 

Thermo Scientific™ HAAKE™ MARS Rheometer, Designed – Can you rely on your Rheological Measuring Results?

Thermo Scientific
Thermo Fisher Scientific
Improve the accuracy and reproducibility of your rheological results 

Can you rely on your rheological measuring results? With correct, reproducible measuring, you can release your batch from production, independent of different users, components or company sites.Thermo Fisher Scientific The Thermo Scientific™ HAAKE™ MARS rheometer, designed for reproducibility, coupled with easy workflow for careful preparation of your sample, is all the difference you need.

Learn the steps you can take to ensure your measuring results are accurate and reproducible – whether produced on different instruments even on different sites.

Download this application note and learn how to:

  • Choose the right measuring geometry for your sample type and viscosity
  • Consider sample history
  • Correct sample loading and trimming

Request the full application note “Well prepared – good results” today!

 Thermo Fisher Scientific Logo

 

 

 

 

 

 

 

 

Spectra Research Corporation

5805 Kennedy Rd., Mississauga ON, L4Z 2G3, TEL: 905 890 2010, FAX: 905 890 1959

Spectra Research Corporation (SRC) offers a range of innovative high-quality scientific products and laboratory services to industrial and scientific markets throughout Canada.

If you require exceptional laboratory services and support, our technical expertise and industry knowledge allows us to provide service and training for all the products we represent.

Established in 1993, SRC is a subsidiary of Allan Crawford Associates (ACA), one of Canada’s largest distributors of electronic components, test equipment and integrated networking solutions.

Webinar – Process Analytics for 21st Century Manufacturing

LIVE WEBINAR: Wednesday May 31st, 2017
To register, please click on the image below!

Key Learning Objectives
  • Understand when we need process analytics in advanced manufacturing
  • Understand some of the challenges in implementing process analytics successfully
  • Understand the particular benefits in using Raman spectroscopy
Who Should Attend

Both new and experienced Raman users, including scientists and researchers from material sciences, life sciences, pharma, and other fields that use Raman spectroscopy.

Webinar: How Extrusion Conditions Influence the Properties of Starch Compounds

Mar 01, 2017 – Mar 01, 2017

You can create better starch compounds by controlling extrusion conditions for food products. This webinar explains how to improve the quality of your final food product by managing the influence of twin-screw extrusion on various product properties.

Background: Starch is a base material for many food products: snacks, cereals, pet food, etc. Yet the gelation process is complex and shaped by many different variables. Processing starch with twin-screw extrusion offers a great flexibility in process design and the opportunity to positively influence products derived from it.

Benefits: Learn how to manipulate processing variables to design a starch matrix that delivers the texture, stability and processability you want. The webinar covers how to choose extruder parameters such as screw set-up, processing temperature and liquid-to-solid ratio to create the desired final food properties. Then see how oscillatory rheometry can deliver the precise analysis needed to ensure a high-quality end product.

Duration: 28 min

Complete the form to view this webinar today!

Please correct the errors and send your information again.

I’d like to speak with a sales representative.

I’d like a product demo.

I’d like a product quote.

Contact Us

Food Rheology Webinar – Before you press ‘start’

 

Food Rheology – What to do before you press ‘start’

Mouthfeel… Spreadability… Appearance… Stability for shelf-life… Testing the structure of a food is essential to ensure the final product appeals to consumers. The results need to be reliable and food samples are sensitive.

Key rheological results can be thrown off by some easy slip-ups in sample handling or the test method itself. This live webinar reviews the critical steps before pressing ‘start’ on your rheometer:

  • Sample handling
  • Sample loading
  • Sufficient recovery
  • Design of test method

Presenter:
Dr. Klaus Oldoerp, Sr. Applications Specialist,
Material Characterization, Thermo Fisher Scientific

Gain confidence in your sampling skills, test method, and rheological results from R&D to QC. Register now ›

 

 

 

 

Date:
Tuesday, February 14

Session 1 Time:
8:00 am EST / 14:00 CET 
What time is this for me?

Session 2 Time:
11:00 am EST / 17:00 CET 
What time is this for me?

Duration:
45 minutes +
15 minutes for Q&A

Thermo Fisher Scientific

Thermo Fisher Scientific
168 Third Avenue
Waltham, MA 02451
United States

 

5805 Kennedy Rd.,
Mississauga ON,
L4Z 2G3 Canada
TEL: 905 890 2010
FAX: 905 890 1959

Making high performance affordable

Atomic force microscopes (AFM) offer atomic-scale resolution for imaging applications in life sciences and materials research.

But AFM’s often come with a very expensive price tag – which can make it a challenge for scientists to afford this technology in these days of shrinking research budgets.

Earlier this month, our partners at Asylum Research introduced a high performance solution that expands the reach of atomic force microscopes to researchers with limited budgets for imaging instrumentation. This new AFM eliminates some of the more advanced accessories and features of the high-end models without sacrificing core performance.

“This is in stark contrast to some competitors who have taken old technology and repackaged it as entry-level AFMs with lower performance,” says Ben Ohler, AFM Business Manager, in an Asylum Research news release. “(This model) is based on the technology-leading MFP-3D AFM, known for closed-loop precision, high-resolution imaging, and low-noise force measurements.”

This model – the MFP-3D Origin – is great news for the AFM research community. It offers far more than just the basic scan modes that you’d expect in a more affordable model and it includes many advanced modes such as nanolithography, Dual AC Mode and piezoresponse force microscopy.

Like the higher-performance model it’s based on, it can be used for a variety of applications in material science, physics, data storage and semiconductors, polymers, chemistry, biomaterials and bioscience. The MFP-3D can be used for single molecule mechanical experiments on DNA, protein unfolding and polymer elasticity, as well as force measurements on biomaterials and polymers.

Until now, purchasing a lower cost AFM meant sacrificing resolution, scan speed, or the availability of sophisticated imaging modes. With the advent of the Origin from Asylum Research, a limited budget does not translate into limited research.

To learn more about the manufacturer and products related to this article, please visit the following link:

Please contact us and speak to one of our sales representatives to request a quote or more information on any of our products.

SRC Blog: Seeking Unparalleled Levels of Support

While we’re always looking to partner with new principals and suppliers who allow us to bring innovative and exclusive products to our customers, we’re particularly interested in working with principals and suppliers who go the extra mile for their customers.

Those that do, offer an unparalleled level of support to their customers – in other words, to you, our customers. This is a measure in the confidence they have in their products. And by partnering with them, we can solidly stand behind the state-of-the-art instruments we sell for use in today’s modern research facilities.

One of these principals is Asylum Research, the technology leader in atomic force and scanning probe microscopy (AFM/SPM) for both materials and bioscience applications. Atomic force microscopy is a technique for analyzing the surface of a rigid material all the way down to the atom level and scanning probe microscopy provides images of surfaces using a physical probe to scan specimens. Both forms of microscopy involve precise measurement and calculation and the absolute certainty that the instruments being used perform exactly as expected.

As such, Asylum Research offers a five-year warranty on every one of its instruments. This type of warranty commitment is unique in the industry. And this kind of commitment keeps us at SRC on the cutting edge of high resolution imaging technology, backed by a guarantee that if an innovative technology doesn’t work exactly as it should, it will be made right for you.