

AFM-based IR spectroscopy—nanoscale chemical analysis with monolayer sensitivity

About Anasys Instruments

Pioneering nanoscale materials characterization

AFM + Thermal Analysis

AFM + IR Spectroscopy

AFM + Mechanical Spectroscopy

AFM + Mass Spectrometry

nanoIR2-s: One platform, two complementary techniques

Analogous to Transmission FTIR

Direct IR absorption spectroscopy & chemical imaging

Highly interpretable spectra

Excels for polymers, life sciences

Analogous to ellipsometry

Sub-20 nm optical microscopy Mapping of complex optical properties Excels for inorganics, 2D materials, photonics

nanoIR2-s key elements

*easily exchangeable for other wavelengths

s-SNOM principle

Previous: Spatio-spectral imaging & broadband spectroscopy

1) Accumulate many images at different wavelengths

2) Construct spectra from image stack

J. Am. Chem. Soc., **2013**, *135*, 18292

Disadvantages: slow, limited spectral resolution

1) Use broadband light source with long travel interferometer

2) Construct spectra from FFT of interferogram

Proc. Natl. Acad. Sci. 111, 7191 (2014) Disadvantages: can't do narrowband imaging (e.g. for compositional mapping)

New from Anasys: Point spectroscopy with s-SNOM

Benefits:

- Spectra can be created quickly at <u>any</u> point
- Same laser source can be used for <u>both spectroscopy and imaging</u>.

Patent pending

8 nm spatial resolution achieved

Surface plasmon polaritons, visible illuminationAFM heightAFM phaseSNOM

Note Au rhombic dodecahedral lattices

I N S T R U M E N T S The nanoscale analysis company

Biological membrane: purple membrane

nanolR2-s measurement

0

SNOM absorption 1660 cm⁻¹ **Example from literature** 0.2 Top. (nm) Su (htm) AFM height 200 nm 0 36 Φ (deg.) ³² Φ (deg.) 10 1664 cm -0.2 (µm) 1 1 (mu) SNOM absorption 1689 cm⁻¹ 0.2 Berweger et al (2013) JACS 135 (49), 18292-18295. 10 0 0 (µm) (ALL) J1

ANASYS

(µm)

0.2

2

Spectral shifts issue with thin samples

s-SNOM peak positions can depend on tip, substrate and sample thickness

Ranier Hillenbrand et al., APL 106, 023113 (2015)

AFM-IR: Measurement of IR absorption

INSTRUMENTS The nanoscale analysis company

Improved sensitivity-Resonant Enhanced AFM-IR

Pulse IR source at contact resonant frequency of cantilever

Continuous oscillation

Sample thickness down to single monolayers

293.23

Resonant enhanced AFM-IR of PEG monolayer

Electrospun Polymer Fibers

New Publication

Liang Gong et al Macromolecules, 2015, 48 (17), pp 6197–6205

Biodiesel: Lipid Vesicles in Streptomyces Bacteria

Deniset-Besseau, et al, The Journal of Physical Chemistry Letters, 5 (4) 654-658 (2014)

New Publications

New Publication

http://www.anasysinstruments.com/publications/

Go There

Title 🗢	Authors 🗢	Journal 🗢	Technology 🖨
Assessing Chemical Heterogeneity at the Nanoscale in Mixed-Ligand Metal–Organic Frameworks with the PTIR Technique	Dr. Aaron M. Katzenmeyer, Dr. Jerome Canivet, Glenn Holland, Dr. David Farrusseng, Dr. Andrea Centrone	Angewandte Chemie International Edition, 53 (11) 2852-2856 (2014)	AFM-IR
Monitoring TriAcylGlycerols Accumulation by Atomic Force Microscopy Based Infrared Spectroscopy in Streptomyces Species for Biodiesel Applications	Ariane Deniset-Besseau, Craig B. Prater, Marie-Joëlle Virolle, Alexandre Dazzi	The Journal of Physical Chemistry Letters, 5 (4) 654–658 (2014)	AFM-IR
Nanoscale spatially resolved infrared spectra from single microdroplets	Thomas Müller, Francesco Simone Ruggeri, Andrzej J. Kulik, Ulyana Shimanovich, Thomas O. Mason, Tuomas P. J. Knowles, Giovanni Dietler	Lab on a Chip (web) January 29, 2014	AFM-IR
Tip-enhanced infrared nanospectroscopy via molecular expansion force detection	Feng Lu, Mingzhou Jin, Mikhail A. Belkin	Nature Photonics (web) January 19, 2014	AFM-IR
PEDOT nanostructures synthesized in hexagonal mesophases	Srabanti Ghosh, Hynd Remita, Laurence Ramos, Alexandre Dazzi, Ariane Deniset- Besseau, Patricia Beaunier, Fabrice Goubard, Pierre-Henri Aubert, Francois Brissetf, Samy Remita	New Journal of Chemistry 38, 1106-1115 (2014)	AFM-IR
Atomic Force Microscope Infrared Spectroscopy of Griseofulvin Nanocrystals	Aaron J. Harrison, Ecevit A. Bilgili, Stephen P. Beaudoin, Lynne S. Taylor	Analytical Chemistry (Web): October 31, 2013	AFM-IR
Molecular Architecture of Plant Thylakoids under Physiological and Light Stress Conditions: A Study of Lipid-Light-Harvesting Complex II Model Membranes	Ewa Janik, Joanna Bednarska, Monika Zubik, Michal Puzio, Rafal Luchowski, Wojciech Grudzinski, Radoslaw Mazur, Maciej Garstka, Waldemar Maksymiec, Andrzej Kulik, Giovanni Dietler, Wieslaw Gruszecki	Plant Cell 25 (6) 2155-2170 (2013)	AFM-IR
Improved atomic force microscope infrared	Hanna Cho, Jonathan R Felts, Min-Feng Yu,	Nanotechnology 24, 444007 (2013) 8pp	AFM-IR

http://www.anasysinstruments.com/event/webinar/

Collaborator Acknowledgement

Alexandre Dazzi Ariane Deniset-Bessseau

William King Jonathan Felts

Bruce Chase John Rabolt Liang Gong

Adele Boskey

Mikhail Belkin Feng Lu Mingzhou Jin

National Institute of Standards and Technology

Andrea Centrone

Donna Hurley

Jason Kilgore

Simberly-Clark

Tom Eby

Greg Meyers

ECOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNI

Andrzej Kulik

Francesco Simone Ruggeri

Isao Noda **Gloria Story**

'A N F O R D UNIVERSITY

> Konstantin Vodopyanov

Jiping Ye

Sean King

NSF-SBIR 0750512. Collaborator acknowledgements do not imply endorsements from respective institutions.

Bernard Van Eerdenbrugh Lynne Taylor

Boulder

University of Colorado

Summary

- New nanoIR2-s platform combines complementary techniques AFM-IR and s-SNOM
- S-SNOM excels for complex optical property mapping, especially for photonic materials
- AFM-IR excels provide direct, true, model-free IR absorption spectroscopy, especially for polymers and life sciences
- Anasys is leading innovations in both fields, including:
 - Resonance enhanced AFM-IR with submonolayer sensitivity
 - ultra fast AFM-IR spectroscopy
 - Efficient s-SNOM point spectroscopy and imaging with a single laser source
- Power and productivity for your research, without compromises

nanolR2-s

Questions ?

New Technology Development AFM-MS

Owens, Shawn; University of California Santa Barbara, Chemistry Berenbeim, Jacob; University of California Santa Barbara, Chemistry Patterson, Catherine; Getty Conservation Institute, Dillon, Eoghan; Anasys Instruments, de Vries, Mattanjah; University of California Santa Barbara, Chemistry

Nanoantennas

Enhancement/scattering from resonant nanostructures

Example from literature

Olmon et al, Optics Express 16 20299 (2008)

nanolR2-s measurement

